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Abstract 

Remote sensing from satellites and drones can be used for irrigation scheduling in different ways. In 
the present report we outline some of these possibilities and present preliminary results from an 
irrigation experiment on potatoes conducted in 2017. Spectral indices can give information on 
drought stress directly either via detection of crop canopy temperature increases due to reduced 
transpiration, or by monitoring of changes in canopy reflective properties in the visible and near 
infrared spectrum. Another approach is to use measurements of canopy characteristics to 
complement current simulation model based irrigation scheduling to obtain higher accuracy and 
spatially distributed irrigation recommendations. While satellites can provide coverage of large 
areas and measurements at many wavelengths, drones can provide higher resolution and more 
frequent images, but at a higher cost. We have obtained satellite and drone imagery from an 
irrigation and N fertilization experiment on starch potatoes during 2017. We have shown clear 
patterns of different N-application rates on leaf area index and greenness of the crop, which may 
have influenced transpiration and soil water content pending further analyses. It is our plan to 
modify Vandregnskab to enable the model to use assimilated data obtained by remote sensing and 
investigate how much increase in precision can be obtained. From the drought stress perspective 
however, 2017 was less rewarding, as the potatoes were only irrigated twice relative early in the 
season. Nevertheless, during 2017, two 3-4 year duration projects for research on remote sensing 
for irrigation scheduling were applied for and granted, so that the activities can be continue until 
2020. 
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1. Introduction  

Water is essential to the life and growth of plants, being a major constituent of living green tissues 

and often comprising as much as 90-95 % of plants fresh weight (Vaadia et al., 2003). Plant stress 

due to lack of water (drought stress) occurs when the evaporative demand of the surrounding 

atmosphere exceeds the supply of water from the soil through the plant (Zarco-Tejada et al., 2012). 

Thus, many plant physiological processes are affected, e.g., protoplasmic hydration, osmotic effects, 

photosynthesis, plant assimilate and nutrient uptake (Vaadia et al., 2003). Finally, the plant will 

weaken and abscise. For agricultural crops, supplying water through irrigation is a solution but it is 

not a straightforward process because water is a limited resource and irrigation equipment is 

expensive. Agriculture is already the worlds’ largest consumer of freshwater (Gilbert, 2012). 

Therefore, detecting and managing crops drought stress is important for food security and sustainable 

water resource management. In humid temperate climates, such as in Denmark, drought is 

intermittent and unpredictable, yet can be the major limitation to crop production throughout the 

growing season, especially for drought sensitive crops such as potato. 

From 1960s onwards, remote sensing emerged for many applications, including crop production, 

drought stress detection and water management, due to its relative lower cost, easier operation and 

revisit capability compared to traditional methods (Homolová et al., 2013; Vadrevu, 2013). Plants 

have inherent spectral characteristics, such as they use only red and blue light in the visible 

spectrum (VIS, 400-700 nm) for photosynthesis, driven by the selective absorption of their 

pigments, leaving the reflected mid-VIS to give leaves their green visual color (Fig. 1). The most 

important chlorophyll-a (Chl-a) absorbs light at approximately 430 and 680 nm, whereas Chl-b 

uses 480 nm and 660 nm and β-carotene from 400 to 550 nm with two local maxima at 470 and 

515 nm. The red edge (RE, 700-800 nm) is the region of rapid change in reflectance before the 

near infrared (NIR, 700-1300 nm). Maximum reflectance is reached in the NIR due to internal 

light scattering in the sponge mesophyll and due to external scattering within the canopy. In the 

shortwave infrared (SWIR, 1300-2500 nm), water dynamics and absorption is prominent, with 

absorption zones from 1450- 1530 nm and from 1900- 2000 nm. Yet, these spectral characteristics 

proved very similar, regardless of plant species and health status, which makes the spectral 

description of different plants and their eco-physiological status challenging for decades. Spectral 

indices (SIs), i.e. mathematical combinations and ratios of various bands, have proven useful in 

discriminating i.e. emphasizing differences. 
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Fig. 1. Typical reflectance “signature” of vegetation (figure adapted from http://gsp.humboldt.edu/OLM/ 

Courses/GSP_216_Online/lesson2-1/vegetation.html). 

 

2. Spectral Index-based study of drought stress  

Under drought, plants optimise their water balance by closing leaves’ stomata, thereby limiting the 

diffusion of gases. This also increases leaf temperature and affects Chl, i.e., particularly the 

thylakoid membranes, and results in a reduced Chl content and decreased light-absorbing 

efficiency in the photosystems. The Chl degradation is commonly observed under drought stress, 

while plants exposed to high temperatures exhibit reduced Chl biosynthesis. Thus, both canopy 

temperature and photosynthesis are indicators of drought stress. A wide range of SIs can be 

found in the literature in relation to describing drought stress in plants (Baluja et al., 2012; Gago 

et al., 2015). One of the best databases for SIs and their sensor-dependent formulation can be 

found online at https://www.indexdatabase.de/. Despite their sensitive to leaf and canopy 

properties under drought stress, SIs are confounded by many factors, such as plant cover, size 

and age, leaf angle, etc. (Kyratzis et al., 2017; Zhang et al., 2017). Therefore, index-based 

analysis essentially investigates whether, and if yes, which SIs, are able to discriminate plants 

with different status. 

In the following, a short literature review of the most important/common SIs are presented and 

exemplified with recent studies. 

 

http://gsp.humboldt.edu/OLM/%20Courses/GSP_216_Online/lesson2-1/vegetation.html
http://gsp.humboldt.edu/OLM/%20Courses/GSP_216_Online/lesson2-1/vegetation.html
https://www.indexdatabase.de/
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2.1. Indices correlated to canopy temperature 

Thermal remote sensing involves deriving thermal images (canopy temperature) and correlation 

with drought-sensitive plant response such as stomatal conductance (gs) or leaf or stem water 

potential (Ψl , Ψs). Thermal indices can be derived from the thermal images to enhance differences 

in temperature between stressed and unstressed plants, and these have shown a great potential to 

determine field drought stress heterogeneity (Baluja et al., 2012). The Crop Water Stress Index 

(CWSI) has been long recognised and shown that plant temperature is a valuable qualitative index 

to detect plant and canopy water status. Well-irrigated crops can usually supply enough water to the 

leaves to satisfy transpiration demand and maintain a cool canopy temperature. Under water 

limitation, canopy temperatures is higher due to reduced transpiration and less associated 

evaporative cooling. Early work used canopy temperature (Tc) differential normalised by the non-

stressed temperature differential that is a function of vapor pressure deficit to define the Canopy 

Water Stress Index (CWSI): 

CWSI =  (Tc -  Ta) - (Tc -  Ta)LL / (Tc -  Ta)UL - (Tc -  Ta)LL 

where Ta is air temperature, and LL and UL are, respectively, lower limit (canopy transpiring at its 

potential rate) and upper limit (a non-transpiring canopy), all in units ◦C. The determination of Ta 

under UL and LL in the above equation should be done with caution in order to avoid non-

representative water stress index due to an inaccurate normalised span of CWSI (Park et al., 2017). 

Baluja et al. (2012) found strong relation between CWSI with gs and Ψs measured for vineyard 

canopies in Spain. Gonzalez-Dugo et al. (2013) also used CWSI determined from thermal imagery 

to assess the variability in the water status of fruit trees within a commercial orchard in Spain. Both 

studies pointed that the CWSI relationships from thermal imagery and water status parameters are 

short-term responses, and other indices related to photosynthesis and change in plant pigments 

should accompany the thermal SIs as they may reflect better a cumulative water deficits, thus 

longer-term response. In addition, CWSI performs well in measuring drought stress in fully 

vegetated surfaces, but suffers from the inability to measure Tc under partially vegetated conditions 

(Clarke, 1997). 

 

2.2. Indices correlated to photosynthesis 

Under drought, the following effects can be expected in plants: 

- Reduced Chl concentration (pigment degradation, reduced Chl biosynthesis). 

- Changed Chl/carotenoid ratio (xanthophyll cycle). 
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- Reduced leaf/stem water content (prolonged, excessive transpiration). 

Thus, suitable SIs for mapping site-specific crop drought stress levels should directly relate to 

these processes. From the SIs in relation to photosynthesis, majority of the studies use “greenness” 

indices such as the Normalised Difference Vegetation Index (NDVI= (NIR-Red)/(NIR+Red)), 

although these are also the least robust. NDVI relates more to plant vigor than the plant dynamic 

physiological status. Also, NDVI correlates well in crops where the biomass proportionally increases 

in parallel to photosynthesis, but for drought stress crops or evergreen crop results are often not so 

satisfactory (Gago et al., 2015; Zhao et al., 2016). As NDVI often fails to capture dynamic 

physiological processes, the Photochemical Reflectance Index (PRI) has been proposed as an 

indicator of the energy dissipation through the epoxidation state of the xanthophyll cycle pigments 

(Gamon et al., 1992). The epoxidation state of the xanthophylls pool is, what is the same, the 

proportion of violaxanthin that has been converted into zeaxanthin under stress conditions (Suárez et 

al., 2010). The PRI equation is:  

PRI =
𝑅𝑅550 𝑡𝑡𝑡𝑡 570 − 𝑅𝑅531
𝑅𝑅550 𝑡𝑡𝑡𝑡 570 + 𝑅𝑅531

 

PRI is used to focus on the green part of the spectrum (Peguero-Pina et al., 2008) and it is very 

sensitive to indicate short-term variations in actual photosynthetic efficiency, especially in well-

developed canopies where NDVI is the least sensitive (Gamon et al., 1992). PRI was proved to be 

sensible to canopy transpiration and to dynamic water stress in evergreen plants (Peguero-Pina et al., 

2008), and even more sensitive than canopy temperature (Suárez et al., 2010). 

Modification i.e. normalisation of PRI (PRInorm = PRI/[RDVI·R700/R670] showed an improved 

capacity for water stress detection (correlated with gs and Ψl) in comparison with other greenness and 

structural indices (commonly are more insensitive to dynamic changes in vegetation). 

Other indices include transformed Chl absorption in reflectance index (TCARI) based on the modified 

chlorophyll absorption in reflectance (MCARI), normalised by the optimised soil-adjusted vegetation 

index (OSAVI) to obtain TCARI/OSAVI: 

TCARI = 3[(R700 - R670)−0.2(R700 −R550)∗(R700 -R670)] 

OSAVI = [(1+0.16)(R800 −R670)] / (R800 ∗R670 +0.16) 

Berni et al. (2009) successfully linked NDVI, PRI and TCARI/OSAVI to LAI and Chl a+b 

concentrations for maize in the USA. Zhou et al. (2016) used green normalized difference vegetation 

index (GNDVI = (NIR−[540:570])/(NIR+[540:570])) and was able to significantly discriminate 
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crops with different irrigation treatment. These authors also emphasised the importance of coupling 

spectral data collected at various scales, i.e., handheld and aerial to improve results. 

 

Sensing of drought stress by the use of SIs has the potential to improve current irrigation scheduling 

methods due to their ability to cover large areas with good resolution depending on the platform used. 

The widely used methods for irrigation scheduling that are employed today are based on simulation 

modelling of soil water content e.g. the Danish Vandregnskab. Such models presume that a large 

range of crop characteristics and their interaction with the environment can be described based on a 

limited number of input data. Furthermore, a whole field is usually presumed to be a uniform unit. 

As fields are becoming larger, it is more a rule than an exception with quite some differences in 

textural and other water balance and crop growth influencing properties across fields. A particular 

under-researched area is the dependence of root depth on soils’ physical properties. As the available 

water capacity of a soil is directly proportional to the effective rooting depth, it is obvious that SIs 

capable of detection of drought stress would allow for a much more differentiated irrigation 

scheduling in time and space. 

 

2.3. Indices correlated to leaf area index and light interception 

Despite the shortcomings of current field water-balance models, they will be the method of choice 

for irrigation scheduling for the near future due to their ability to predict soil water deficits when 

coupled to weather forecast and thus allow planning of irrigation scheduling. Drought stress 

detection by remote sensing may be too late due to intervals of satellite observation and sensitivity 

issues. However, combinations of the methods should allow significant progress. Apart from the 

direct sensing of drought stress that may allow stratification in space of model variables, SI can be 

used as input to the water balance models. While NDVI may be less suitable to detect drought stress 

directly, it has been demonstrated in many research papers that SIs based on ratios between red and 

near-infrared reflectances such as NDVI and RVI are good predictors of light interception by green 

leaves and green leaf area index e.g. Christensen and Goudriaan (1983). Assimilation of such data 

into current models would therefore allow for a more precise and spatially distributed modelling of 

water balance e.g. Battude et al. (2017). For instance, it would be relative easy to modify the 

Vandregnskab model to use light interception data derived from RVI measurements in its 

calculation of transpiration from green leaf area to replace the current modelling of green leaf area 

index and subsequent calculation of light interception and transpiration. 
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3. Platforms for studying drought stress and water balance 

Reflectance data necessary for remote sensing analysis such as index-based analysis can be derivied 

from sensors at various scales, from field (handheld) to space (airborne). Lately, many advanced 

platforms carrying the sensors have emerged with the raising demand for improved spatial and 

temporal resolution, such as aircrafts, unmanned aerial vehicles (UAVs), and terrestrial/hand-held 

techniques. Each platform has its own advantages disadvantages (Fig. 2). The choice of platforms, 

and thus of data resolution, depends on the study objective, but synergies are ongoing and expected 

to further enhance the results.  
 

 
Fig 2. An overview of different remote sensing platforms with associated advantages and disadvantages. 

Figure adapted from Pádua et al. (2017).   

 

3.1. Satellites 

3.1.1. Landsat 

With the launch of Landsat-1 in 1972, satellites proved as a valuable and necessary data source for 

agriculture, geology, forestry, regional planning, education, mapping, and global change research. 
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There is an extensive literature describing the use of Landsat data in agricultural drought monitoring 

on large scale (Zhang et al., 2017), tracking seasonal drought effects for various ecosystem properties 

(e.g., Goerner et al., 2009). Landsat satellites were launched by NASA and so far there are eight, the 

last (Landsat 8) enabling processing and analysis of multispectral and thermal data at 30 and 100 m 

spatial resolution, respectively (Ding et al., 2014). Jackson et al. (2004) and Anderson et al. (2004) 

calculated Normalised Difference Water Index (NDWI= (R860-R1240)/(R860+R1240)) from 

Landsat 5 and 7 and correlated it well with vegetation water content. Other Landsat application 

include the use of Normalized Difference Infrared Index (NDII) to remotely sense Equivalent Water 

Thickness (EWT) of leaves and canopies in fields (Yilmaz et al., 2008), or integrated temperature 

vegetation dryness index (TVDI) based on a synergistic with the aid of Landsat TM/ETM data (Gao 

et al., 2011).  

Apart from Landsat, MODIS data (500-1000 m spatial resolution) have also been used extensively in 

relation to large-scale drought stress investigation (Goerner et al., 2009; Huete et al., 2002; Wang et 

al., 2018). However, because of the coarse spatial resolution of Landsat and MODIS, it is difficult to 

apply the data on smaller scale without coupling with finer-scale data. 

 

3.1.2. Sentinel-2 

Sentinel-2 is a multispectral sensor with 13 bands from 443 to 2190 nm (Table 1) and a 10 day 

repeat cycle. The three red edge bands seem especially attractive, as this part of the spectrum is 

known to contain certain information about fine differences in plant pigments; higher Chl 

content can indicate higher canopy density or complex community structure, or higher N content 

in plant tissue (Alvarez-Añorve, Quesada, & De la Barrera, 2008). Laurin et al. (2016) showed 

high potential for ecological monitoring using simulated Sentinel-2 data for tropical rainforests 

in West Africa. Despite its potential in terms of good spectral and spatial resolution, studies with 

actual use of Sentinel-2 for agro-environmental investigations are very limited as the satellite 

started providing data in late 2015, thus research yet have to investigate the actual potential of 

Sentinel 2 for drought stress detection and management. 
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Table 1. General spectral characteristics of Sentinel 2 satellite and band comparison with RapidScan 

field hand held spectrometer. 

Sentinel-2 Bands 
Central wavelength 

(nm) 
Min (nm) Max (nm) 

Resolution 

(m) 

Rapidscan 

bands (nm) 

1 – Coastal aerosol 443 430 457 60  

2 – Blue 490 448 546 10  

3 – Green 560 538 583 10  

4 – Red 665 646 684 10 670 

5 – Vegetation Red Edge 705 694 713 20  

6 – Vegetation Red Edge 740 731 749 20 730 

7 – Vegetation Red Edge 783 769 797 20 780 

8 – NIR 842 763 908 10  

8A – Narrow NIR 865 848 881 20  

9 – Water vapor 945 932 958 60  

10 – SWIR – Cirrus 1375 1336 1411 60  

11 – SWIR 1610 1542 1685 20  

12 – SWIR 2190 2081 2323 20  

 

3.2. Unmanned aerial vehicles  

UAVs greatest advantage over satellites and other airborne platforms is the reduced altitude of their 

flight, which greatly decreases costs and improves the data resolution, allowing for higher monitoring 

frequencies (Fig. 2). Also, the thickness off the atmosphere is much smaller compared to space borne 

platforms, thus atmospheric effects are less. However, their disadvantage is that they require more 

flights to cover large areas due to their reduced flight time (Gago et al., 2015). As for other data, a 

possible solution is coupling UAV data with field data. 

The use of UAV data in remote sensing of drought stress is rather recent and it develops rapidly Gago 

et al. (2015). Studies successfully employing UAV data include thermal remote sensing of drought 

stress (e.g., Berni et al., 2009; Gonzalez-Dugo et al., 2013), as well various photosynthesis correlated 

SIs (Kyratzis et al., 2017; Park et al., 2017). 
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4. Preliminary results from the POTENTIAL potato project 

Field experiments with potato crop (table potatoes) under various irrigation (and nitrogen fertilisation) 

treatments were established in 2017 on coarse sandy soil in Havris site, Denmark (Fig. 3). UAV 

flights for remote sensing data collection were conducted at two occasions, 19/07 and 23/08. The 

camera is multispectral with green, red, red edge and near infrared bands. These were used to 

investigate preliminary SIs for drought assessment, to test whether SIs are correlated with ground 

based variables such as soil water content and leaf area index (LAI). The collected drone images were 

georectified, geometrically and radiometrically corrected to ground reflectance and used to calculated 

SIs:  

NDVI =
𝑁𝑁𝑁𝑁𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑅𝑅 + 𝑅𝑅𝑅𝑅𝑅𝑅

 

GNDVI =
𝑁𝑁𝑁𝑁𝑅𝑅 − 𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁
𝑁𝑁𝑁𝑁𝑅𝑅 + 𝐺𝐺𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁

 

NDRE =
𝑁𝑁𝑁𝑁𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝐺𝐺𝑅𝑅
𝑁𝑁𝑁𝑁𝑅𝑅 + 𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝐺𝐺𝑅𝑅

 

where NDVI is normalized difference vegetation index, GNDVI is green normalized difference 

vegetation index, and NDRE is normalized difference red edge index. The resulting SIs maps are 

presented on Fig. 4. 

 

 
Fig. 3. Location of the experimental fields at Havris site (left) and of the study location on coarse sand soil in 

Denmark (right). Left image in left is true-color RGB from UAV data from 26/07-2017. 
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Fig. 4. Vegetation indices maps for the potato experimental fields at two dates: 19/7 (left) and 23/8 (right) at 

Havris coarse sand soil site in Denmark. 
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All of the indices range from +1.0 to -1.0, and areas dominated by soil have low values, whereas 

vegetated areas have high values. As each index reflects different part of the spectrum where plants 

respond differently (Fig. 1), some indices discriminated better the treatment responses than other. 

From the figure, it can be seen that NDVI is not sensitive, at least for the dates of image acquisition, 

probably because the potato canopy was well developed for all treatments and this index becomes 

saturated under too green canopy plants and the sharp difference between the reflectance of near infra 

red and red. Similarly, GNDVI also resulted in relatively low response, though better than NDVI, 

probably because the high green values. NDRE was the most promising of the three tested indices, 

because of notable difference between the RE and NIR used in this index. The different plots were 

clearly distinguished although differences were probably induced by nitrogen fertilization differences. 

Linear regression modelling was also applied to test whether the indices are correlated with ground 

variables, i.e. soil water content and LAI, and if yes, how much of their variation they explain. The 

result (Table 2) showed that only NDVI is significantly related to soil water content (p<0.01), 

essentially translating to higher soil water content inducing higher NDVI, but only 13% of soil water 

content variation could be explained. For the LAI, all indices were significantly correlated (p<0.01) 

but they also explained very little part of the LAI variation observed on the field.  

 
Table 2. The results of the linear regression analysis of the indices with soil water content 

Index  Sope Intercept R2 P 

Soil water content     

NDVI 

GNDVI 

NDRE 

48.46 

-3.96 

1.03 

-30.98 

15.80 

12.47 

0.1295 

0.0013 

0.0001 

0.001901 

0.7617 

0.9261 

Leaf Area Index     

NDVI 

GNDVI 

NDRE 

16.88 

12.84 

14.56 

-11.37 

-6.46 

1.5 

0.18 

0.16 

0.28 

0.0002 

0.0005 

0.000002 

 

From the above, it can be concluded that more SIs need to be tested in order to explain the variation 

in soil water content and LAI between irrigation treatments better. This is, however, limited due to 

the small number of bands in the recorded multispectral data. In addition, during the experimental 

period of summer 2017, Sentinel-2 images will also be examined and included in the analysis for not 
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only detecting drought stress, but also if it is possible to support the estimation of water balance 

(Zhang et al., 2016).  

 

5. Perspectives 

Remote sensing for detection of drought stress and input to water balance models for irrigation 

scheduling has a significant potential to improve the economic outcome and possibly reduce water 

use in agriculture. However, significant methodological challenges exist as well as to devise swift 

and efficient procedures to process the large amounts of data produced by the Sentinel program and 

those obtainable from unmanned aerial vehicles imagery. For efficient irrigation scheduling the 

output of these procedures has to be ready preferably within 24 hours from the time the data were 

acquired. Furthermore, the irrigation scheduling software and hardware has to be able to utilize 

spatially distributed information. Based on the current project, our group has obtained funding for 

two research projects within the subject of remote sensing for irrigation scheduling – both starting 

from 2018. 

 

The first research project called “Potential” is a cooperation between Belgian, Dutch, German and 

Danish researchers and farmers as well as the irrigation industry represented by the Danish company 

Fasterholt. This project aims to use both satellite, drone and ground-based remote sensing to model 

water balance using acquired information on soil and crop heterogeneity for precision irrigation. 

Fasterholt will deliver a variable rate irrigation gun for the field experiments to be conducted during 

2017-2020. Furthermore, it is investigated how drought stress and nitrogen deficiencies can be 

distinguished by use of both thermal and multispectral information from UAVs. Both thermal and 

multispectral cameras have been purchased for this purpose. The investigation is done in order to 

develop guidelines for split-N fertilization in combination with irrigation allowing for less N-leaching 

and adjustment of the total N-dose according to soil mineralization (Zhou et al., 2017; Zhou et al., 

2018). 

 

The second research project called “MOIST” or “Managing and Optimizing Irrigation by Satellite 

Tools” is a cooperation between a number of Danish partners: DTU-Space, AU-Agro, SEGES, Cowi, 

AgroSens and Sandholt consulting as well as partners from Italy and Spain. In this project a more 

ambitious approach to precision irrigation scheduling is taken, which is envisaged to be based entirely 

on information from satellite data obtained with a broader range of the Sentinel sensors including 
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thermal bands and SAR for soil moisture sensing. A two source energy Balance (TSEB) land surface 

scheme (Norman et al., 1995) will be used to estimate ET as it contains a level of complexity which 

makes it robust for many different landscapes (Kustas et al., 2016). Field experiments will be 

conducted during 2017-2019. 
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